应考方略 数学有数

$$\therefore f(x) = \frac{a}{a^2 - 1} (a^x - a^{-x})(a > 1, x > 0; 0 < a < 1, x < 0).$$

点评:求解函数解析式的几种常用方法主要有待定系数法和换元法.换元法:已知f(g(x))的表达式,欲求f(x),我们常设t=g(x),从而求得x,然后代入f(g(x))的表达式,从而得到f(t)的表达式,即为f(x)的表达式.利用函数基础知识,特别是对"f"的理解,用好等价转化,注意定义域本题对思维能力要求较高,对定义域的考查、等价转化易出错.

二、求值、求最值、求值域

例 3. 求函数 $y=\cos^2 x+\sin x$ $(|x| \le \frac{\pi}{4})$ 的最大值与最小值.

解析:
$$\diamondsuit t = \sin x$$
, $\because |x| \le \frac{\pi}{4}$, $\therefore t \in [-\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}]$.
 $\therefore y = -t^2 + t + 1 = -(t - \frac{1}{2})^2 + \frac{5}{4}$,

∴ 当
$$t = \frac{1}{2}$$
 时, $y_{\text{max}} = \frac{5}{4}$, $t = -\frac{\sqrt{2}}{2}$ 时, $y_{\text{min}} = \frac{1 - \sqrt{2}}{2}$

∴ 函数 $y=\cos^2 x+\sin x \ (|x| \le \frac{\pi}{4})$ 的最大值为 $\frac{5}{4}$,最小值为

$$\frac{1-\sqrt{2}}{2}$$
.

点评: 求解三角函数的值域 (最值) 常见到以下几种类型的题目:

①形如 $y=a\sin x+b\cos x+c$ 的三角函数化为 $y=A\sin(\omega x+\varphi)+k$ 的形式. 再求最值 (值域):

②形如 $y=a\sin^2x+b\sin x+c$ 的三角函数,可先设 $\sin x=t$,化 为关于 t 的二次函数求值域 (最值);

③形如 $y=a\sin x\cos x+b(\sin x\pm\cos x)+c$ 的三角函数,可先设 $t=\sin x\pm\cos x$,化为关于t的二次函数求值域(最值).

例 4. 实数 x、y 满足 $4x^2-5xy+4y^2=5$ (①式),设 $S=x^2+y^2$,求 $\frac{1}{S_{min}}+\frac{1}{S_{min}}$ 的值.

解得
$$S = \frac{10}{8 - 5\sin 2\alpha}$$

 $\begin{array}{c} :: -1 \leqslant \sin 2\alpha \leqslant 1 \, , \ :: 3 \leqslant 8 - 5 \sin 2\alpha \leqslant 13 \, , \ :: \ \frac{10}{13} \leqslant \frac{10}{8 - 5 \sin \alpha} \\ \leqslant \frac{10}{3} \, . \end{array}$

$$\therefore \frac{1}{S_{\text{max}}} + \frac{1}{S_{\text{min}}} = \frac{3}{10} + \frac{13}{10} = \frac{16}{10} = \frac{8}{5}.$$

点评:由 $S=x^2+y^2$ 联想到 $\cos^2\alpha+\sin^2\alpha=1$,于是进行三角换元,设 $\begin{cases}x=\sqrt{S}\cos\alpha,\\y=\sqrt{S}\sin\alpha\end{cases}$ 代入①式求 S_{\max} S_{\min} 的值.此种解法后面求S 最大值和最小值,还可由 $\sin 2\alpha=\frac{8S-10}{S}$ 的有界性而求,即解不等式: $\left|\frac{8S-10}{S}\right| \le 1$.这种方法是求函数值域时经常用到的"有界法".

另解:由
$$S=x^2+y^2$$
,设 $x^2=\frac{S}{2}+t$, $y^2=\frac{S}{2}-t$, $t\in[-\frac{S}{2},\frac{S}{2}]$,

则
$$xy=\pm\sqrt{\frac{S^2}{2}-t^2}$$
 代人①式得: $4S\pm5\sqrt{\frac{S^2}{2}-t^2}=5$,

移项平方整理得 100t²+39S²-160S+100=0.

∴
$$39S^2 - 160S + 100 \le 0$$
, $\# \# \frac{10}{13} \le S \le \frac{10}{3}$.

$$\therefore \frac{1}{S_{\text{max}}} + \frac{1}{S_{\text{min}}} = \frac{3}{10} + \frac{13}{10} = \frac{16}{10} = \frac{8}{5}.$$

点评:此题第一种解法属于"三角换元法",主要是利用已知条件 $S=x^2+y^2$ 与三角公式 $\cos^2\alpha+\sin^2\alpha=1$ 的联系而联想和发现用三角换元,将代数问题转化为三角函数值域问题.第二种解法属于"均值换元法",主要是由等式 $S=x^2+y^2$ 而按照均值换元的思路,设 $x^2=\frac{S}{2}+t$ 、 $y^2=\frac{S}{2}-t$,减少了元的个数,问题且容易求解. 另外,还用到了求值域的几种方法:有界法、不等式性质法、分离参数法.

和"均值换元法"类似,我们还有一种换元法,即在题中有两个变量 x、y 时,可以设 x=a+b , y=a-b , 这称为"和差换元法",换元后有可能简化代数式.本题设 x=a+b , y=a-b , 代入①式整理得 $3a^2+13b^2=5$, 求得 $a^2\in[0,\frac{5}{3}]$, 所以 $S=(a-b)^2+$

$$(a+b)^2 = 2(a^2+b^2) = \frac{10}{13} + \frac{20}{13}a^2 \in \left[\frac{10}{13}, \ \frac{10}{3}\right], \quad \text{\vec{P}- $\vec{\mathcal{X}}$} \frac{1}{S_{\min}} + \frac{1}{S_{\min}} \text{ $\vec{\Phi}$ $\acute{\underline{\mathbf{1}}}$.}$$

例 5. $\triangle ABC$ 的三个内角 A 、B 、C 满足: A+C=2B, $\frac{1}{\cos A} + \frac{1}{\cos C} = -\frac{\sqrt{2}}{\cos B}$,求 $\cos \frac{A-C}{2}$ 的值.

解析: 由
$$\triangle ABC$$
 中已知 $A+C=2B$,可得 $B=60^{\circ}$.

由
$$A+C=120^\circ$$
,设 ${A=60^\circ+\alpha,\atop C=60^\circ-\alpha,}$ 代人已知等式得:

$$\frac{1}{\cos A} + \frac{1}{\cos C} = \frac{1}{\cos(60^{\circ} + \alpha)} + \frac{1}{\cos(60^{\circ} - \alpha)} = \frac{1}{\frac{1}{2} \cos \alpha - \frac{\sqrt{3}}{2} \sin \alpha}$$

$$+\frac{1}{\frac{1}{2}\cos\alpha+\frac{\sqrt{3}}{2}\sin\alpha} = \frac{\cos\alpha}{\frac{1}{4}\cos^{2}\alpha-\frac{3}{4}\sin^{2}\alpha} = \frac{\cos\alpha}{\cos^{2}\alpha-\frac{3}{4}} = -2\sqrt{2},$$

解得:
$$\cos \alpha = \frac{\sqrt{2}}{2}$$
, 即: $\cos \frac{A-C}{2} = \frac{\sqrt{2}}{2}$.

另解:由 A+C=2B,得 $A+C=120^{\circ}$, $B=60^{\circ}$,所以 $\frac{1}{\cos A}+\frac{1}{\cos A}$

$$\frac{1}{\cos C} = -\frac{\sqrt{2}}{\cos B} = -2\sqrt{2}.$$

所以 $\cos A = \frac{1}{-\sqrt{2+m}}$, $\cos C = \frac{1}{-\sqrt{2-m}}$, 两式分别相

加、相减得,

$$\cos A + \cos C = 2\cos \frac{A + C}{2} \cos \frac{A - C}{2} = \cos \frac{A - C}{2} = \frac{2\sqrt{2}}{m^2 - 2}$$